4/29/24, 2:51 PM CECS 229 Programming Assignment #7

CECS 229 Programming Assignment #7

Due Date:

Sunday, 5/12 @ 11:59 PM

Instructions:

1.In helpers.py , copy-paste implementation for the following functions from your

pa6.py :

® gram_schmidt()
e ref()

°* rank()

2.In structures.py , copy-paste the implementation of the missing Matrix methods
from pa5.py .

3. Complete the programming problems in the file named pa7.py .You may test your
implementation on your Repl.it workspace by running main.py .

4. When you are satisfied with your implementation,
e Submit your Repl.it workspace
* Download the file pa7.py and submit it to the appropriate CodePost auto-grader
folder.

Objectives:

1. Apply the QR-factorization of a matrix A to solve the system of equations AT = ?

2. Create a function that computes the determinant of an n X n Matrix object.

3. Use the Python built-in function numpy.linalg.eig() to find the eigenvalues and
eigenvectors of a matrix.

4. Create a function that computes the singular value decomposition of a Matrix object.

Notes:

Unless otherwise stated in the FIXME comment, you may not change the outline of the
algorithm provided and you may not use any built-in functions that perform the entire
algorithm or replaces a part of the algorithm, unless otherwise stated.

Problem 1:

Background:

. - . . — 7
In this problem, you will implement a solver for the system of linear equations Ax = b where

e Aisann X n matrix whose columns are linearly independent

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

1/6

4/29/24, 2:51 PM CECS 229 Programming Assignment #7

n

eR
eR"

o] 8]

To implement the solver, you must apply the following theorem:

THM | QR-Factorization
If A € Fp,xn matrix with linearly independent columns a1, as, . . . a,, then there exists,

. — — —
1.an m X n matrix QQ whose columns uq, us, ..., u, are orthonormal, and

2.an n X n matrix R that is upper triangular and whose entries are defined by,

r..:{@,«?ﬁ fori < j
1] . .
0 fori > j

such that A = QR. This referred to as the QR factorization (or decomposition) of matrix A.

To find matrices @ and R from the QR Factorization Theorem, we apply Gram-Schimdt process
to the columns of A. Then,

. — —
¢ the columns of @ will be the orthonormal vectors uj, us, . . . ,u_)n returned by the Gram
Schimdt process, and

* the entries r;; of R will be computed using each column wu; as defined in the theorem.

Your Task:

_>
Assuming A € Ry« is a Matrix object,and b € R"isa Vec object, finish the
implementation of the function qr_solve(A, b) which uses the QR-factorization of A to

. —
compute and return the solution to the system Az = b.

e INPUT:
® A : Matrix object
= b : Vec object

e OUTPUT:

= Vec object representing the solution to the system Az = b.

HINT:

- 7 - 7 . : .
If A= QR,then Az = b becomes QRx = b.What happens if we multiply both sides of
_>
the equation by the transpose of)7 i.e., What does QtQRE> = Q! b simplify to?

def gr_solve(A : Matrix, b: Vec):
Solves the system of equations Ax = b by using the
QR factorization of Matrix A
:param A: Matrix of coefficients of the system
:param b: Vec of constants
:return: Vec solution to the system

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

2/6

4/29/24, 2:51 PM

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

CECS 229 Programming Assignment #7

Constructing U

U should be the set of orthonormal vectors returned

by applying Gram-Schmidt Process to the columns of A

U = None # FIXME: Replace with the appropriate Line

n = len(U)

Constructing Q

Q should be the matrix whose columns are the elements
of the vector in set U

Q = Matrix([[None for j in range(n)] for i in range(n)])
for j in range(n):

pass # FIXME: Replace with the appropriate Line

Constructing R
R = Matrix([[@ for j in range(n)] for i in range(n)])
for j in range(n):
for i in range(n):
if i <= j:
pass # FIXME: Replace with the appropriate Line

Constructing the solution vector x

b_star = Q.transpose() * b

x = [None for i in range(n)]

FIXME: find the components of the solution vector
and replace them into elements of x

return Vec(x)

Problem 2:

Implement the helper function _submatrix(A, i, j) which creates and returns the sub-
matrix that results from omitting row ¢-th row and j column of A .

INPUT:
= A: Matrix object representing an m X n matrix
= i :intindex of arow of A satisfyingl <7 <m

= j:intindex of a column of A satisfyingl < j<mn

e QOUTPUT:

= Matrix object of the sub-matrix

def _submatrix(A : Matrix, i : int, j: int):

constructs the sub-matrix of an mxn Matrix A that
results from omitting the i-th row and j-th column;
i and j satisfy that @ <=1 <=m, and @ <= j <= n
:param A: Matrix object

:param i: int index of row to omit

:param j: int index of column to omit

:return: Matrix object representing the sub-matrix
m, n = A.dim()

pass # FIXME: Implement this function

3/6

4/29/24, 2:51 PM CECS 229 Programming Assignment #7

Problem 3:

Finish the implementation of the function determinant(A) which computes the determinant

of n X m matrix A .

* INPUT:
= A: Matrix object
e QUTPUT:

= the determinant asa float value

def determinant(A: Matrix):
computes the determinant of square Matrix A;
Raises ValueError if A is not a square matrix.
:param A: Matrix object
:return: float value of determinant

= Nn:

raise ValueError(f"Determinant is not defined for Matrix with dimension {m}x{r

if n == 1:
return None # FIXME: Return the correct value
elif n ==
return None # FIXME: Return the correct value
else:
=0
FIXME: Update d so that it holds the determinant
of the matrix. HINT: You should apply a
recursive call to determinant()

H H H Q

return d

Problem 4:

Implement the function eigen_wrapper(A) which uses Python built-in function
numpy.linalg.eig() to create a dictionary with eigenvalues of Matrix A as keys, and
their corresponding list of eigenvectors as values.

e INPUT:
= A: Matrix object
e OUTPUT:

= Python dictionary

def eigen_wrapper(A: Matrix):
uses numpy.linalg.eig() to create a dictionary with
eigenvalues of Matrix A as keys, and their corresponding
list of eigenvectors as values.
:param A: Matrix object
:return: Python dictionary

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

4/6

4/29/24, 2:51 PM CECS 229 Programming Assignment #7

pass # FIXME: Implement this function

Problem 5:

Finish the implementation of function svd(A) so that it returns the singular value
decomposition of A. Recall that the singular value decomposition of a matrix A € R,,,..,,
consists of matrices,

* ¥ € R,,.,: a diagonal matrix whose main diagonal hold the singular values of AT A in
decreasing order,

or 0 O 0
0 o2 O 0
o «- 0 o O
[0 - oo oo 0]

ie, o1 > o9 > --+ > o, where r = number of eigenvalues of AT A

e V € Ry xn: the matrix whose columns are the eigenvectors of AT A. The order of the
columns corresponds to the order of the singular values, i.e. the first column is the
eigenvector corresponding to the largest singular value sigmaj, the second column is the
eigenvector correspoind to sigmas, etc.

. . — —
* U € Rpyxm: the matrix whose columns are given by u; = %A'Uj
7

e [NPUT:

= A: Matrix object
e OUTPUT:

= tuple with Matrix objects (U, Sigma, V)

def svd(A: Matrix):
computes the singular value decomposition of Matrix A;
returns Matrix objects U, Sigma, and V such that
1. V is the Matrix whose columns are eigenvectors of
A.transpose() * A
2. Sigma is a diagonal Matrix of singular values of
A.transpose() * A appearing in descending order along
the main diagonal
3. U is the Matrix whose j-th column uj satisfies
A * vj = sigma_j * uj where sigma_j is the j-th singular value in
decreasing order and vj is the j-th column vector of V
4, A = U * Sigma * V.transpose()
:param A: Matrix object

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

5/6

4/29/24, 2:51 PM

localhost:8888/nbconvert/html/OneDrive/Documents/Teaching/1. Materials/2024/CECS 229/2. Programming Assignments/PA %237/CECS 229 Progra...

CECS 229 Programming Assignment #7
:return: tuple with Matrix objects; (U, Sigma, V)

m, n = A.dim()

aTa = A.transpose() * A

eigen = eigen_wrapper(aTa)

eigenvalues = np.sort_complex(list(eigen.keys())).tolist()[::-1]

Constructing V
V should be the mxm matrix whose columns
are the eigenvectors of matrix A.transpose() * A
V = Matrix([[None for j in range(n)] for i in range(n)])
for j in range(1, n + 1):
pass # FIXME: Replace this with the lines that will
correctly build the entries of V

Constructing Sigma
Sigma should be the mxn matrix of singular values.

singular_values = None # FIXME: Replace this so that singular_values

holds a Llist of singular values of A
in decreasing order
Sigma = Matrix([[@ for j in range(n)] for i in range(m)])
for i in range(1, m + 1):
pass # FIXME: Replace this with the Llines that will correctly
build the entries of Sigma

Constructing U
U should be the matrix whose j-th column is given by
A * vj / sj where vj is the j-th eigenvector of A.transpose() * A
and sj is the corresponding j-th singular value
U = Matrix([[None for j in range(m)] for i in range(m)])
for j in range(1, m + 1):

pass # FIXME: Replace this with the lines that will

correctly build the entries of U

return (U, Sigma, V)

6/6

