COMP3310/etc Assignment 1 – The Last Mile solution

$24.99

Original Work ?
Category: You will Instantly receive a download link for .ZIP solution file upon Payment

Description

5/5 - (3 votes)

Intro:
This assignment is to develop a (short) technical report that deals with a variety of network design
aspects relating to building a last-mile network, with the last section making a specific design
recommendation for a semi-fictitious rural setting.
You are encouraged to research widely, then interpret and present your findings. More marks will be
given for deeper analysis than just repeating lecture content. You will need to find more background
information to answer all the questions in good depth.
• This assignment is worth 10% of the final course mark.
• It is due by 23:59 Monday 5 April, Canberra time.
o Note that Canberra time changes from gmt+11 to gmt+10 from Sunday 4 April!
• Late submissions will not be accepted, except in special circumstances
o Extensions must be requested, via the course convenor, with appropriate evidence.
• Submission will be via TurnItIn through the link on the wattle page for this course.
o You can work together on the research, but your submission must be entirely your own
work, with appropriate citation of your sources. You should look at the feedback from
TurnItIn to ensure you have properly referenced external materials.
• Reminder: There are four questions; please check you attempted all four before you submit.
For the three brief questions Q1-Q3, each answer should be about 0.5-1 page long. These questions
help set the scene for your analysis in Question 4 – you can reference your Q1-Q3 answers there.
[The percentage in brackets indicates the available marks]
Q1: Why is the Last Mile an important and complex issue in Networking and Communications?
[15%]
Q2: What are the main, typical, options for delivering Last Mile networks in Australia? [15%]
Q3: What are the inherent (physical) limitations on data-rates across typical Last Mile networks?
[15%]
The above answers are input to the following design challenge. Your report for Q4 should be about
1200 words long. You are strongly encouraged to include appropriate diagrams and tables, to help
explain your arguments.
Q4. Develop a basic network design to meet the following needs of a rural community [55%]:
Home broadband can be delivered through a range of cabled and wireless methods, each with their
own costs, limitations and benefits. For this part of the assignment you need to provide a brief
technical report for a rural community network organisation. Please write to a reasonable level of
technical understanding, but don’t blind them with jargon.
The community wants to build their own shared network for 256 farms, across their interestinglylaid out region, through a common infrastructure – i.e. everyone gets the same connection, if not
2
the same performance, to keep the maintenance simple. The minimum requirement is that every
farm gets 50Mb/s down and up, though of course anything better is welcome.
The sketch below shows the layout of the farms. They are conveniently laid out on two touching
concentric circles of roads, each with four ring roads (radius of 0.75, 1.5, 2.25 and 3km) and four
cross-roads at 45degrees as shows. Along each segment of each ring there are four equally-spaced
houses (only the outer ring houses are shown in the diagram).
Every home has a 50m driveway connecting it to the ring road just outside of it, and every home has
a working phone landline (POTS) from one of the two centrally-located exchanges. There’s also a 4G
mobile phone tower on each exchange. Both the exchanges and the 4G phone coverage provide
connectivity back to the wider internet.
Fortunately the local Council is very supportive, you can build what you want, but would prefer any
new infrastructure to be along the roads and house driveways only, i.e. don’t go through backyards.
You can also use the existing towers at the exchanges.
a) Describe the various FTTx/HFC cable approaches that could be deployed and what a deployment
would look like in this situation – what kind of equipment and cables (copper/fibre) are needed
where, and how much is needed. Simple diagrams will be very helpful. Contrast the cabled
results, and compare them to some reasonable off-the-shelf wireless options. Your analysis
should include expected downstream/upstream performance, any limitations, as well as
describing any capital and operating cost concerns for the whole system. Explain what it would
take to run your network for the next 30 years.
b) Explain what you would recommend, and why. Highlight any assumptions or simplifications you
need to make. It’s only a first report for the organisation, they’ll need to go get a lot more data
based on your advice, and detailed quotes for the actual network elements.
c) Use the following indicative pricing to estimate what each design you propose would cost to
deploy. Note that not all the necessary equipment is priced here, so you should flag anything
else that is needed, as well as what operational costs you might expect longer term (people,
electricity, protection/repairs, etc.):
a. Fibre: $10/meter for the cable (1 pair of fibres), and $500 for terminating each end
b. Copper: $3/meter for the cable (1 pair of copper), and $150 for terminating each end
c. Wireless transmitters:
i. Omnidirectional = $20,000 each to cover a circle 4km wide, plus $500 per house.
ii. Point-to-point links with 5km range = $600 at each end.
d. Converting one fibre to one copper cable (and vice-versa) is a simple $50 unit
e. Converting one fibre to 16 copper or fibre cables is a more expensive $1,000 cabinet.
(Yes, these numbers are extremely rough, but they do cover outdoor grade coax/UTP/fibre, they
include the active equipment at each end, they magically support whatever kind of LAN-protocolspecific equipment is needed for each technology, and they are powered by a hidden electricity grid
that is conveniently available everywhere all the time. It’s a start!).
Note, there is no single ‘right’ answer, and without a specific site survey and more detailed pricing it
is hard to define the ‘optimal’ answer. The aim is to analyse the problem, develop potential
solutions, and make a strong argument as to which options lead to the best outcomes.
3
For all questions, cite all your sources appropriately (use whatever citation style you are familiar
with) and be clear where you are quoting and/or paraphrasing your sources. Lectures are not citable
sources.